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Les quatre enjeux environnementaux 
majeurs du secteur du bâtiment

Émissions de 
CO2

Extraction 
accrue des 
agrégats

Dépendance au 
calcaire

Déchets de la 
démolition
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4
Cement Production by Country 2025

Cumulative CO₂ emissions from cement, 2024

Global Status Report for Buildings and Construction 2024/2025 | UNEP - UN Environment Programme

https://worldpopulationreview.com/country-rankings/cement-production-by-country
https://ourworldindata.org/grapher/cumulative-co2-cement
https://www.unep.org/resources/report/global-status-report-buildings-and-construction-20242025
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Sand and gravel production global by country 2024| Statista

https://www.statista.com/statistics/376665/industrial-sand-and-gravel-production-by-top-countries/
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Pacte vert pour l'Europe 
Objectif: Atteindre la neutralité climatique d’ici 2050

Valorisation des déchets 
coquillers

Valorisation des granulats de béton 
recyclé

Carbone Capture et 
Stockage/Utilisation CCSU

Production mondiale de mollusques
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-80%
Avec CCSU

En kg CO2/T. de 
ciment

Évolution des émissions de CO2 du secteur cimentier 

Émissions combustibles déchets  
hors biomasse

Émissions combustibles fossiles
Émissions de process (décarbonatation)

Marché des granulats de béton recyclé

Gravier et de la pierre 
concassée 
Sable

Granulats fins 
recyclés
Autre

Le segment du gravier et de la pierre concassée 

domine le marché

Ø Matériaux à faible empreinte carbone
Ø Similarités avec le gravier naturel et le calcaire

2025
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8Recycled Concrete Aggregates Market | Global Market Analysis Report - 2035

(Zelloufi et al., 
2025)

Milliers de tonnes 

https://www.futuremarketinsights.com/reports/recycled-concrete-aggregates-market


Carbone Capture et Stockage/Utilisation CCSU

Carbonatation Ex-
situ

Carbonatation 
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déchets industriels 
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Source 
(Ca/Mg)

Réacteurs
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Mixage par 
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Solution 
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CO2
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CO2 Capture

Purification Compression

Stockage & 
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Eau carbonatée

Injection de 
CO2
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Durcissement par 
carbonatation

Pré-Conditionnement

Durcissement
Hors moule

Durcissement 
dans le moule

Etape 1

1 2

État gazeux

Béton Eau Film de CaCO3 Cristaux de CaCO3 CO2

Diffusion du CO2 dans le réseau poreux du béton

Pratiques rapportées dans la 
littérature

Degré optimal d'élimination de l’eau
58–62 %

Élimination insuffisante de l’eau Diffusion limitée du CO2

Élimination excessive de l’eau Interrompt l’hydratation et la 

carbonatation

Durcissement hors 

moule
Température: 22–50 °C

Humidité relative: 30–90 %

Durée : 3 h à 9 jours

Durcissement dans le 
moule

4–18 h de cure en moule 

(Bétons fluides)

Démoulage immédiat après le moulage 

(produits à mélange sec)

Introduction Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

10(Zhang et al., 2017); (El-Hassan et al., 2013); (Mo et al., 2013) 



Durcissement par 
carbonatation

Exposition au CO2

Paramètres 
d’exposition 

Etape 2

Ca2+ +

CaCO3

Solide

Sites de 
nucléation

Ca #
$% + CO( #

$) → CaCO( +
o Temps d’initiation non 

défini
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Hydratation / dissolution du CO2 Dissolution-hydrates / précipitation-

CaCO3Pré-Conditionnement

Durcissement
Hors le moule

Durcissement 
dans le moule

Etape 1

1 2

Paramètres recommandés

o CO2 pur o 50–70% HR

o 20–25 °C
o ≈ 40 °C (CaCO3 précipitation)
o ≈ 100 °C (évaporation de l’eau) 

o Forte concentration de CO2
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,-
. /)

,-
. /)

CO32−

CO3 2−

,-./)CO32−

HCO 3
- ,-
. /)

,-
. /)

CO32−

CO3
2−

CO3 2−

,-./)

CO3
2−

C-S-H Ca(OH)2 SCM

,-
. /)

,
0 -.

/

,0-./

11

CO32−

(Yoon et al., 2007); (Ouhenia et al., 2008); (Torrenti., 2022) 



Durcissement par 
carbonatation

Exposition au CO2

Paramètres 
d’exposition 

Etape 2

Post-conditionnement

Pulvérisation 
d'eau

Immersion 
dans l'eau

Etape 3
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Pré-Conditionnement

Durcissement
Hors le moule

Durcissement 
dans le moule

Etape 1

1 2

12(Pu et al., 2023); (El-Hassan et al., 2015); (Xuan et al., 2023) 



Problématiques et 
objectifs

Quantifier le potentiel de stockage de CO2 d’un BAP

Analyser l’effet du pré-conditionnement

Identifier les facteurs contrôlant la carbonatation

Évaluer l’impact de la carbonatation sur les propriétés des BAPs

Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives
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Quelle quantité de CO2 peut être stockée dans un BAP ?

Comment influence-t-il l’absorption de CO2 et la microstructure du BAP?

Facteurs chimiques, facteurs physiques ou les deux ?

Le durcissement par carbonatation améliore-t-il les propriétés du BAP?



Démarche Expérimentale
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Matières premieres Formulation des 
BAPs

Densité 

Granulométrique laser

Vides de Rigden

Perte au feu (LOI)

Cinétique d’absorption d’eau

ATG

DRX

MEB

Stabilité

Ouvrabilité

Viscosité

Cure

ATG

Affinement de rietveld

Perte de masse

Quantification du 
CO2

14

MEB

Résistance en compression

Densité apparente

Analyse microstructurale

Porosité au mercure

Propriétés du BAP 
durci

Pré-Conditionnement 
appliqué 

25 °C         70% 
RH

CO2 CO2

Conditions normales 
25 °C         95% 

RH

1, 7, 28 et  90 jours



Composition des bétons autoplaçants (BAPs)

Adjuvant
s

RCA 
4/12.5

CEM II 52.5N

SSP

NCA 
4/12.5

Sable 0/4
LS
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Préparation SSP

Etat brut Nettoyage Broyage Tamisage 

Constituents (kg/m3) BAP

LS-NG LS-RG SSP-NG SSP-RG

Sable 847.77 847.77 842.11 842.11

NCA 719.14 - 714.34 -

RCA - 646.06 - 641.75

CEM II 320 320 320 320

LS 137.5 137.5 - -

SSP - - 137.5 137.5

Eeautot 219.6

Superplastifiant 4.58

Accélérateur de prise 3.66

NCA RCA

(30% en masse du ciment) 
LS SSP

Poudre de coquille Saint-
JacquesPoudre de calcaire

Gravier recyclé

Gravier naturel 

SSP:
LS:
RCA
:NCA
:

Classe de consistance : SF2 [EN 12350-8]

Viscosité (t500) : < 2 sec [EN 12350-8]

Pourcentage de laitance < 15% [EN 12350-11]

Cahier des charges 
BAP



Adaptation du protocole de stockage du carbone

Pré-
Conditionnemen

t

Etape 1

Dans le 
moule Hors moule

Exposition au 
CO2

Etape 2

Durée 7h

Température 25 °C

Humidité relative 60%

Durée 17h

Température 60 °C

Température 25 °C

CO2 20%

Humidité relative 70%
Enceinte de carbonatation

Paramètres fixés de carbonatation

70% HR - (max recommandé)

Humidité suffisante pour hydratation 

Post-préconditionnement jugé inutile              retiré du protocole

Etape 3

Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives
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Quantification du CO2 stocké: ATG

Teneur en hydrates (C-S-H, Ca(OH)2)

CaCO3 issu du C–S–H et Ca(OH)2

CO2 stocké 

1.7CaO. SiO). 4H)O → 1.7CaO. SiO). 1.3H)O + 2.7H)O

Ca( )OH ) → CaO + H)O

1.

2.

3.

Seuls C-S-H et Ca(OH)2 participent à la carbonatation

m CaCO345657 = n45657×1.7
mCaCO34; <7 = = n4; <7 =

Tous les produits d'hydratation contribuant à la perte de masse entre 

150 °C et 400 °C sont regroupés sous la notation C-S-H

m4<= = m 4;4<> ?@?×M4<=/M4;4<>

C-S-H

Ca(OH)2

Gypse, ettringite, et 
carboaluminate



Quantification du CO2 stocké: DRX

Identifier les phases probables
Crystallographic Information Files (CIF)

Affinement Rietveld

Ø Les produits d’hydratation 

Ø Les phases anhydres 

Ø Les phases issues de la réaction 
LS/SSP avec les phases aluminates

Ø Les phases carbonatées 

Ø Les phases provenant des 
agrégats 

Ø Importer les fiches CIF dans le logiciel 

d’affinement (MAUD)

Ø Quantifier les phases

Ca(OH)2 – Ettringite – Gypse 

C2S – C3S 

Monocarboaluminate – Hemicarboaluminate  

Calcite – Vatérite – Aragonite 

Chlorite – Muscovite – Albite – Quartz – Orthoclase…..   

Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives
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https://www.crystallography.net/cod/

(Crystallography Open Database)

Ø Paramètres cristallographiques pour une 

phase idéale / pure

Ø Référence initiale pour comparer les 

données expérimentales aux valeurs 

théoriques 

https://www.crystallography.net/cod/


Quantification du CO2 stocké: Perte de masse 

Séchage initial 

Calcination 

CO2 stocké
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Segment 1: 49min 
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1000 °C

Segment 2: 2h
525 °C

Segment 3: 49min 
[525-1000] °C

Température: 105°C
Durée: 24h
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Rhéologie des BAPs
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Etalement et viscosité au cône d’Abrams  [EN 12350-8]: SF2 

Calorimétrie semi-
adiabatique

LS

SSP

§ Effet du précurseur-
Liant

LS-NCA → maintien prolongé SF2

Ø Ouvrabilité

Ø Viscosité

§ Facteurs clés

Caractéristiques du SSP 

Porosité

Matière organique 

Particules ultra fines

1- Rhéologie
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Analyse thermogravimétrique
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LS= 0.5%

SSP= 1.6%
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Etalement et viscosité au cône d’Abrams  [EN 12350-8]: SF2 

§ Effet du granulat 
grossier 

LS-RCA et SSP-RCA → ouvrabilité limitée à ~45 min

Ø Ouvrabilité

Ø Viscosité

§ Facteurs clés

Caractéristiques  RCA 

Porosité

Absorption d’eau

1- Rhéologie
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Résistance à la ségrégation:  Indice de stabilité visuelle 
(ISV)

Résistance à la ségrégation:  Stabilité aux tamis [EN 12350-
11]

BAP Operateur 
1

Operateur 
2

Moyenne VSI 
limites Stabilité

LS-NCA 2 2 2 2 S à IS

LS-RCA 1 1.3 1.15 1 S

SSP-NCA 1 0.7 0.85 0 S à HS

SSP-RCA 0.5 0 0.25 0 HS
S: Stable  IS: Instable  HS: Haute Stabilité

LS-NCA

Ressuage 

Halo de mortier

Thixotropie

LS-NCA et LS-RCA

Ségrégation 
visible

12
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SR1
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Limite

Limite

LS-NCA → plus faible résistance à la 
ségrégation

Meilleure Stabilité 

SSP ; RCA

1- Rhéologie
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CO2 stocké

24

Durcissement par 
carbonata5on 
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§ Pré-conditionnement
Teneur en eau
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LS-RCA (3,42 ±
0.02%)

< < <

VSI →

Instable

Indice de ségrégation  →

SSP

Rétention d’eau →
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→
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Teneur en hydrates participant à la carbonatation  
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CO2 stocké: ATG
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Diffusion de CO2

Front de carbonatation: Phénolphtaléine
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Passivation des hydrates

Alternance hydratation ↔ carbonatation

Dissolution des hydrates (liée au pH local)
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Quantité du CO2 stockée estimée par ATG
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Quantité du CO2 stockée estimée par ATG
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LaB6 660b NIST poudre Échantillon Carbonaté

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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Phases 
cristallines 

Produits d’hydratation 

Portlandite Ettringite
Hc Gypse

SSP — LS

Calcite 
Vatérite Aragonite

Clinker

C3S C2S

Durcissement sans carbonatation - 1 jour
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Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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cif
wt (%)

LS-NCA LS-RCA SSP-NCA SSP-RCA

Quartz 27.08(1.2) 34.2(0.2) 14.26(0.1) 38.16(0.3)

Calcite 39(2) 36.9(0.2) 51.5(3) 34.84(0.3)

Portlandite 7.8(0.3) 3.4(0.05) 6.8(0.1) 2.60(0.06)

Ettringite 2.3(0.1) 2.02(0.1) 2.31(0.2) 1.41(0.1)

C3S 2.8(0.2) 4.9(0.1) 4(0.1) 6.30(0.1)

C2S 1.9(1) 16.11(0.3) 15.5(0.4) 14.06(0.4)

Hc 0.28(0.04) 0.26(0.4) 0.24(0.06) 0.2(0.05)

Aragonite 0.7(0.1) 0.7(0.1) 1.31(0.1) 1.09(0.014)

Vaterite 0.13(0.9) 0.25(0.1) 0.02(0.2) 0.27(0.1)

Gypsum 0.1(0.1) 0.1(0.1) 0.22(0.12) 0.03(0.09)

o Hydratation plus élevée dans les échantillons NCA

o Réactivité similaire de SSP et LS avec le ciment → stabilisation 

rapide de l’ettringite
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Durcissement sans carbonatation - 1 jour

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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Durcissement par carbonatation - 1 jour
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Phases 
cristallines 

Produits d’hydratation 

Portlandite Ettringite
Hc Gypse

SSP — LS

Calcite 
Vatérite Aragonite

Clinker

C3S C2S

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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cif
wt (%)

LS-NCA LS-RCA SSP-NCA SSP-RCA

Calcite 41(1) 52(0.4) 55(1) 54(1)

Aragonite 2.06 2.8(0.1) 1.33(0.2) 1.75(0.1)

Vaterite 0.96 1.3(0.1) 0.6(0.2) 0.78(0.07)

Portlandite - 0.2(0.03) - 0.15(0.03)

Ettringite 0.2(0.6) 0.2(0.1) 0.2(0.9) 0.2(0.1)

Hc - - 0.7(0.1) -

C3S 1.9(0.3) 1.5(0.1) 2.4(0.2) 2.5(0.1)

C2S - 2.7(0.1) 1.8(0.3) 2.58(0.1)

Gypsum 0.81 0.5(0.1) 0.1(0.2) 0.36(0.7)

Quartz 50(1) 37(0.3) 38(0.5) 34.7(0.2)

o Augmentation significative de la calcite

o Légère augmentation de l’aragonite et la vatérite

o Carbonatation simultanée des hydrates

o Ca(OH)₂ insuffisant → baisse du pH → décalcification du C-S-H

34

Durcissement par carbonatation - 1 jour

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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Durcissement par carbonatation - 7 jours
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Phases 
cristallines 

Produits d’hydratation 

Portlandite Ettringite
Hc Gypse

SSP — LS

Calcite 
Vatérite Aragonite

Clinker

C3S C2S

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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cif
wt (%)

LS-NCA LS-RCA SSP-NCA SSP-RCA

Calcite 29.2(0.1) 65(0.4) 57.5(0.3) 65.6(0.2)

Aragonite 1.25(0.1) 3.1(0.1) 0.1(0.1) 1.9(0.2)

Vaterite 0.4(0.1) 2.5(0.1) 0.01(0.06) 1.1(0.1)

Portlandite 9.6(0.1) 0.17(0.03) 0.004 (0.03) 0.01(0.07)

Ettringite 4.1(0.1) 0.04(0.08) 0.003(0.064) 0.001(0.041)

Hc - - 0.4(0.1) -

C3S 1.6(0.1) 0.6(0.1) 0.02(0.08) 0.01(0.08)

C2S 7.2(0.1) 1.4(0.1) 0.01(0.3) 0.6(0.2)

Gypsum 4.5(0.5) 0.1(0.1) 5.1(0.6) 0.9(0.2)

Quartz 39(0.2) 23.9(0.1) 35.7(0.2) 26.5(0.3)

o Précipitation continue de la calcite

o Conversion de l’aragonite et la vatérite en calcite dans 

SSP-NCA   

LS-NCA

≈50% →
≈29%

Re-précipitation

pH →

Ca²⁺ et CO₃²⁻ suffisants

Dissolution de la calcite 

Hydratation

Portlandite Ettringite
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Durcissement par carbonatation - 7 jours

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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Phases 
cristallines 

Produits d’hydratation 

Portlandite Ettringite
Hc Gypse

SSP — LS

Calcite 
Vatérite Aragonite

Clinker

C3S C2S

Durcissement par carbonatation - 28 jours

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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cif
wt (%)

LS-NCA LS-RCA SSP-NCA SSP-RCA

Calcite 57(1) 62.7(0.6) 69(1.6) 59.3(0.4)

Aragonite - 0.005(0.194) - 0.6(0.2)

Vaterite - 0.3(0.2) - 0.3(0.2)

Portlandite 0.1(0.1) - 0.27(0.06)

Ettringite - - - -

Hc 0.7(22) - - -

C3S - - - -

C2S - - - -

Gypsum - - - 0.2(0.2)

Quartz 42(1) 37(1) 31(2) 39(0.5)

o Précipitation continue de la calcite

LS-NCA

≈29% →
≈57%

Calcite

la règle des étapes 
d’Ostwald 

Vatérite Aragonite

Métastable Stable

Carbonatation Hydratationou 

Précipitation CaCO3

C3S→

Hydration rapide→

Passivation

Carbonatation ralentie

C2S

Précipitation modérée CaCO3 

→

Hydration lente→

Passivation

Carbonatation 
profonde
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Durcissement par carbonatation - 28 jour

Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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o RCA > NCA pour l’absorption de CO2 à tous les 
âges

Max absorption ≈32–33 wt% à 7 
jours

→ ≈25-26 wt% à 28 
jours 

Hydratation dominant dans LS-NCA au jeune âge 
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Quantité du CO2 stockée estimée par DRX-Affinement Rietveld
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RCA > NCA 
SSP > LS 

Quantité du CO2 stockée estimée par méthode perte de masse
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Effet du durcissement par carbonatation sur 
les propriétés des BAPs 
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Résistance en compression 
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Le durcissement par carbonatation 

augmente la résistance en compression 

sans effet négatif à long terme

LS-NCA → ↑ résistance mécanique | ↓ absorption de CO2

La carbonatation est-elle le seul facteur ?
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CO₂ n’est pas le seul facteur

Quels autres mécanismes contrôlent réellement l’évolution 
de la résistance ?
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Résistance en compression: Relation avec le CO2 stocké (méthode perte de masse)  
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Équilibre entre carbonatation 
et hydratation
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Résistance en compression: Paramètres influençant son évolution 
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Résistance en compression: Paramètres influençant son évolution 
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large

Effet plus bénéfique
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↑ Surface carbonatée → ↑ résistance en 

compression
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Résistance en compression: Paramètres influençant son évolution 
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De l’état initial scellé au durcissement par carbonatation
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Durcissement par carbonatation non encore optimal à 1 jour

Augmentation de la densité à partir de 
7 jours
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Densité apparente 
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1 jours Porosité totale (%)

LS-NCA 15.8

LS-RCA 16.4

SSP-NCA 10.1

SSP-RCA 18.8

7 jours Porosité totale (%)

LS-NCA 14.2

LS-RCA 12.1

SSP-NCA 13.5

SSP-RCA 14.1

28 jours Porosité totale (%)

LS-NCA 12.5

LS-RCA 11.3

SSP-NCA 13.3

SSP-RCA 12.7

Affinement de la porosité dans les systèmes
SSP → sur-carbonatation → augmentation de porosité
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Précipitation des CaCO3→ ↑ pores <200 nm → microstructure plus dense

LS-BAPs: porosité gel <10 nm→ hydratation efficace

SSP-BAPs: ↑ 50–200 nm et >200 nm → microstructure poreuse plus grossière
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Porosité
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Calcite

ITZ Pa 1  = 2.532 
µm
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Pores
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Analyse de la microstructure: Observations MEB
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Carbonatation ou durcissement standard ?
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De l’état initial standard au durcissement par carbonatation

L
S

SS
P

résistance initiale < durcissement standard

Long terme résistance en compression  
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Durcissement standard 
Résistance en compression
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Le durcissement par carbonatation 
améliore la densité apparente
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CO₂ stocké par le durcissement par carbonatation

≈ 45 kg CO2/m3 ≈ 106  kg 
CO2/m³

24 h 90 jours

≈ 8 % CaCO3 ≈ 70 % 
CaCO3

24 h 28 jours

CO₂ séquestré par les précurseurs

60 kg CO2/m3 6 kg CO2/m3

RCASSP et LS
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Méthode: Perte de masse

Carbonatation ou durcissement standard
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Conclusions et perspectives 
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Conclusions
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Réduction de l’empreinte carbone 

Le durcissement par carbonatation, combiné à l’utilisation de SSP et de RCA, offre un potentiel de stockage de CO₂

Amélioration microstructurale

Matériaux alternatifs efficaces

SSP et les RCA permettent un stockage de CO₂ plus élevé tout en conservant des propriétés physico-mécaniques comparables aux LS 

et NCA

La précipitation de la calcite augmente la résistance mécanique, la densité apparente et affine le système poreux

L’efficacité de ces améliorations dépend de l’équilibre entre hydratation–carbonatation, de la composition du mélange et du volume carbonaté

Facteurs contrôlants la carbonatation 

Teneur en eau Diffusion de CO2
Interaction entre carbonatation et 

hydratation 



Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Perspectives
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Points à approfondir

§ La perte de résistance à long terme des BAPs-SSP en cure standard

§ Résultats divergents du CO2 stocké selon les techniques utilisées

• Absence d’analyse du cycle de vie

Nouveaux matériaux

biosourcés
Modélisation 
multi-échelle 

Développer des techniques 
analytiques

Développer un protocole 
standardisé de carbonatation

Carbonatation et stockage de CO2
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