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https://worldpopulationreview.com/country-rankings/cement-production-by-country
https://ourworldindata.org/grapher/cumulative-co2-cement
https://www.unep.org/resources/report/global-status-report-buildings-and-construction-20242025
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https://www.statista.com/statistics/376665/industrial-sand-and-gravel-production-by-top-countries/
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Les quatre enjeux environnementaux
majeurs du secteur du batiment

Déchets de la Sl e el

démolition Cco,
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Production mondiale de sable et de gravier industriels (2023)
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https://www.statistiques.developpement-durable.gouv.fr/lextraction-de-matieres-minerales-en-france-en-2023
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Valorisation des déchets
coquillers

Production mondiale de mollusques

Problématique et objectifs

Méthodologie

Pacte vert pour I'Europe

Objectif: Atteindre la neutralité climatique d’ici 2050

Valorisation des granulats de béton
recyclé

Marché des granulats de béton recyclé

= Africa = Latin America and the Caribbean
= Northern America = Asia
= Europe = Oceania
105640 247 4e9117 2025
598 672 249658
m Gravier et de la pierre
concassée
Sable
Granulats fins
recyclés
m QOysters m Clams, cockles and ark-shells AUtre
u Scallops ® Sea mussels

u Constricted tagelus = Other molluscs

2022

2022

1927

848 2528

2021 2077 2024 860 2363

2020 1970 2046 860 2373

2019 2055 2032 869 2222

2018 2141 2093 853 2227

Le segment du gravier et de la pierre concassée

domine le marché

0 5000 10000 15000

20000

Milliers de tonnes

(Zelloufi et al.,
2025)

» Matériaux a faible empreinte carbone
» Similarités avec le gravier naturel et le calcaire
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Recycled Concrete Aggregates Market | Global Market Analysis Report - 2035
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Carbone Capture et

Stockage/Utilisation CCSU

Evolution des émissions de CO, du secteur cimentier

Enkg CO,/T. de

700 T
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400

300

200

100

ciment

663 kg

= Emissions combustibles déchets
hors biomasse

" Emissions combustibles fossiles
® Emissions de process (décarbonatation)

582 kg

2015 2018 fc 2025 fc 2030 fc 2050
-80%
Avec CCSU LGC

Association Frangaise de Génie Civil


https://www.futuremarketinsights.com/reports/recycled-concrete-aggregates-market
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Processus naturel

CO,
atmosphérique

!

Eau de pluie

|

Roches alcalines

!

Minéraux
carbonatés

Problématique et objectifs

Source
(Ca/Mg)

Boues

Méthodologie

Analyse des résultats

Carbone Capture et Stockage/Utilisation CCSU

Conclusions et perspectives

| CO, Capture —

Purification v Compression
Stockage &
Utllliatlon
Carbonatation Ex-
situ
: . . Processus naturel
Carbonatation Carbonatation
minérale accélérée
v CO,
déchets industriels Granulats de Bt atmosphérique
Fines de ciment béton recyclés eton 1
Poudre + eau distillée Solution
- y : y interstitielle

Aqueuse Durcissement par Mixage par

Gaz-Solide-liquide T carbonatation carbonatation l
Injection de
COZ ‘ ‘ Béton
Réacteurs < Champre Eau carbonatée 1
scellée
Béton carbonaté
Carbonates Materlau'x
carbonatés
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Durcissement par
carbonatation

Etape 1
Pré-Conditionnement
1 2
Durcissement Durcissement
dans le moule Hors moule

Pratiques rapportées dans la
littérature

— Durcissement dans le = Durcissement hors
moule

moule
4-18 h de cure en moule

—> Température: 22-50 °C

(Bétons fluides)
—> Humidité relative: 30-90 %

Démoulage immédiat aprés le moulage ] o
-> —> Durée : 3 ha9jours

(produits a mélange sec)

(NSQ [JBuilders
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Diffusion du CO, dans le réseau poreux du béton

Etat gazeux

Film de CaCO; - Cristauxde CaCO; o@® CO,

Béton m Eau

Elimination insuffisante de 'eau — Diffusion limitée du CO,

Elimination excessive de 'eau —— Interrompt I'hydratation et la

carbonatation

Degré optimal d'élimination de I’eau
58-62 %

(Zhang et al., 2017); (El-Hassan et al., 2013); (Mo et al., 2013) 10



Introduction Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Durcissement par

carbonatation
Hydratation / dissolution du CO, Dissolution-hydrates / précipitation-
CaCoO;
Etat aqueux Etat solide
! : '\ ! Sites de
S ' mimimmmimmm ' nucléation
Etape 2
. Expositionau CO, | __ _ _ _ -
" Paramétres i
- d'exposition

...............

Solide

Parameétres recommandés

o CO, pur o 50-70% HR o Forte concentration de CO,

Ca§5 + coga) — CaCO3(s)

o 20-25°C o Temps d’initiation non
o =40 °C (CaCO; précipitation) défini
o =100 °C (évaporation de I'’eau)

ssssssssss

(Yoon et al., 2007); (Ouhenia et al., 2008), (Torrenti., 2022)
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Durcissement par

carbonatation
Etape 3
17 Post-conditionnement —l
- Immersion " Pulvérisation i
{ dans l'eau : d'eau !

NSX [3Builders
(Pu et al., 2023); (El-Hassan et al., 2015); (Xuan et al., 2023)
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Problématiques et
objectifs

Quelle quantité de CO, peut étre stockée dans un BAP ?

Quantifier le potentiel de stockage de CO, d’'un BAP

A~

Comment influence-t-il I’absorption de CO, et la microstructure du BAP?

Analyser I'effet du pré-conditionnement

Facteurs chimiques, facteurs physiques ou les deux ?

Identifier les facteurs controlant la carbonatation

7z
7\

Le durcissement par carbonatation améliore-t-il les propriétés du BAP?

Vd

Evaluer I'impact de la carbonatation sur les propriétés des BAPs

P

13



Contexte

Démarche Expérimentale

Matiéres premieres ——>

Densité

Vides de Rigden

Perte au feu (LOI)

Cinétique d’absorption d’eau
ATG

DRX

MEB

Granulométrique laser

(NS'X [3Builders

Problématique et objectifs

Formulation des

——

BAPs

Ouvrabilité

Viscosité

Stabilité

1,7,28 et 90 jours

Pré-Conditionnement

Méthodologie

Analyse des résultats

Conditions normales

e o e e e o

D

appliqué
25°C 70% 25°C 95%
RH A
COZ [cleNeYe wz A8
3888| | @@ @ @ cooe A
il |S0e @ .
sa28] |9 @@ @ ocis i

a0 Qo
o) P ome]

ao
ao

Conclusion et perspectives

Quantification du
CO,
ATG

Affinement de rietveld

Perte de masse

Propriétés du BAP
durci
Résistance en compression

Densité apparente
Analyse microstructurale

MEB

Porosité au mercure

14
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Composition des bétons autoplagants (BAPs)

Etat brut RCA Nettoyage "
412.5 Sable 0/4

SSP

Cahier des charges

BAP .
Classe de consistance : SF2 [EN 12350-8]
Viscosité (t50) : < 2 sec [EN 12350-8]
Pourcentage de laitance < 15% [EN 12350-11]

[Si Devicers

Tamisage

Méthodologie Analyse des résultats Conclusions et perspectives

Constituents (kg/m?3)

LS-NG
Sable 847.77
NCA 719.14
RCA -
CEM I 320
LS 137.5
SSP -
Eeauy
Superplastifiant

Accélérateur de prise

NCA —> RCA

LS ———> SSP

(30% en masse du ciment)

BAP
LS-RG SSP-NG SSP-RG
847.77 842.11 842.11
- 714.34 -
646.06 - 641.75
320 320 320
137.5 - -
- 137.5 137.5
219.6
4.58
3.66

SSP: Poudre de coquille Saint-
LS: PRMEYe calcaire

RCA  Gravier recyclé
NCA  Gravier naturel

15
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Adaptation du protocole de stockage du carbone
Etape 1 Etape 2
Pré- Exposition au
Conditionnemen CO,
t
Parametres fixés de carbonatation
Dans le Hors moule
moule
—
Température 25°C
Durée 7h Durée 17h CO, 20%
Température 25°C Température 60 °C Humidité relative 70%
Humidité relative 60% Enceinte de carbonatation

Etape 3

70% HR - (max recommandé)

Humidité suffisante pour hydratation

Post-préconditionnement jugé inutile —> retiré du protocole

(NSQ [JBuilders

16
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Quantification du CO, stocké: ATG

1. |Teneur en hydrates (C-S-H, Ca(OH),)

1.7Ca0. Si0,. 4H,0 — 1.7Ca0. Si0,. 1.3H,0 + 2.7H,0

Ca(OH), — CaO + H,0

2. CaCQO; issu du C—S—H et Ca(OH),

m CaCO3c_S_H = nc_s_HX1.7

mCaCO3ca(0H), = Nca(oH),

3. CO, stocké

mCOZ = m CaCOg3 totXMCOZ/MCaCO3

RSk Dovicers

Gypse, ettringite, et
carboaluminate

ATG (%)

Méthodologie Analyse des résultats Conclusions et perspectives

105

100

95

90

85

80

75

—— Carbonatation — Sans CO,
g 0
Nl’ﬁ \
\ 1 -0,5
EE 14
J 1 -1,5
Ca(OH);
C—
< > ]2
C-S-H
B 4 -2,5
1 1 L 1 L _3
200 400 600 800 1000 1200

Température ( °C)

Seuls C-S-H et Ca(OH), participent a la carbonatation

Tous les produits d'hydratation contribuant a la perte de masse entre

150 °C et 400 °C sont regroupés sous la notation C-S-H

DTG (Wt% / min)

17
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Quantification du CO, stocké: DRX

Identifier les phases probables ]———) Affinement Rietveld J
Crystallographic Information Files (CIF N
: ry grap (CIF) =

> Les produits d’hydratation CQQ (Crystallography Open Database) » Importer les fiches CIF dans le logiciel

Ca(OH), - Ettringite — Gypse https://www.crystallography.net/cod/ d’affinement (MAUD)
> Les phases anhydres o
c,s-Cs | s A sy > Quantifier les phases

> Les phases issues de la réaction » Paramétres cristallographiques pour une

LS/SSP avec les phases aluminates phase idéale / pure

Monocarboaluminate — Hemicarboaluminate > Référence initiale pour comparer les

» Les phases carbonatees données expérimentales aux valeurs

Calcite — Vatérite — Aragonite théoriques

» Les phases provenant des
agrégats

Chlorite — Muscovite — Albite — Quartz — Orthoclase.....

(IS Dovider:



https://www.crystallography.net/cod/
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Quantification du CO, stocké: Perte de masse

; f e CO, stockeé
Séchage initial 2
o ® ®
Température: 105°C Calcination
Durée: 24h
1200
Segment 4: 2h
1000 °C
1000
O 800
OB’ Segment 2: 2h Segment 3: 49min
5 600 525 °C [625-1000] °C
©
I
£ 400
2
200 Segment 1: 49min
[25-525] °C
0
0 1 2 3 4

Temps (h)



Rhéologie des BAPs
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Contexte

1- Rhéologie

Problématique et objectifs

Méthodologie

Etalement et viscosité au cone d’Abrams [EN 12350-8]: SF2
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1- Rhéologie
Etalement et viscosité au cone d’Abrams [EN 12350-8]: SF2
—LS-NCA xLS-RCA —SSP-NCA x SSP-RCA
80 4 18 80 518
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Contexte

Problématique et objectifs

Méthodologie

1- Rhéologie
Résistance a la ségrégation: Indice de stabilité visuelle
(ISV)
VS A
BAP Operateur | Operateur | Moyenne limites Stabilité
1 2 " Y
N J/ N————
LS-NCA 2 2 2 2 S-a-S
LS-RCA 1 1.3 1.15 1 S
SSP-NCA 1 0.7 0.85 0 S aHSs
SSP-RCA 0.5 0 0.25 0 HS
S:Stabte 1S: instable HS: Haute Stabilité

LS-NCA et LS-RCA

Halo de mortier

Thixotropie

Ségrégation

visible

D Builders

ECOLE D'INGENIEURS

Ressuage

Analyse des résultats

Conclusion et perspectives

Résistance a la ségrégation: Stabilité aux tamis [EN 12350-

11]

Indice de ségrégation au tamis (%)

21
20
19
18
17
16
15
14
13
12

ONCA mRCA

I

H

LS

SSP

LS-NCA — plus faible résistance a la

ségrégation

Meilleure Stabilité

SSP ; RCA

Limite

Limite

23



Durcissement par
carbonatation

CO, stocké
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= Pré-conditionnement

Teneur en eau

o L8 NCA  --%---RCA o SSP - NCA -+ -RCA
94 0 £ 94
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g |88 T \ 8,8 e =
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CO, stockeé: ATG . . .
2 Teneur en hydrates participant a la carbonatation
8 LS-NCA ¢©CH AC-S-H 3 LS-RCA ©CH AC-S-H
7 r A 7 r A
6 A 6 | A
~ 5 | <5 f Carbonatation précoce (1
X o = :
P ° o 4 5 jour)
Qo = e .
g S o i 31 o . Quantité d’hydrates formeés
T A T n
2t 2 Quantité de Ca(OH),
1 A 1 A
0 , , , , , , , , , 0 , , , , , , , , , Diffusion de CO,
0 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90 . .
Temps (jours) Temps (jours)
8 SSP-NCA ©CH AC-S-H 8 SSP-RCA ©CH AC-S-H
7+ 7 t
A A A
6 A 6
55 ° &5
Q i < :
Bl e g’ 4
© 3k © 3 L
T £ R
2 + 27 o
1 1F A
0 T —— 0 B ——
30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Temps (jours)

Temps (jours)
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Front de carbonatation: Phénolphtaléine

Diffusion de CO,

2 —LS-NCA fISC';' % LS-NCA ¢ LS-RCA LS ~NCA SSP — NCA
[ 99,99 99,99
100 ¢ 100 7

T 18 @ — f J
£ = E S d
8 k\\\ -~ 80 B !’,r
S 16 - c
E 6 : “‘ -g o/!
] : )—{lrs_‘_ E 60 | "4
S 14 | S S o A
2 [ 9 -
4] re
s | £ 0 | 37,657
o 12 F o 33,50 33,60
© r (O] PR
5 . | 2
o 100¢ S

L L

8 [ N N N N 1 N N N N 1 N N N N 1 N N N N 1 N N 1 1 ) 1 1 1
0 1 2 3 4 5 4 6 8
Teneur en eau (%) Vt (days 2) Vi (days '2)

(NS'X [3Bvilders



Contexte

Problématique et objectifs

Quantité du CO, stockée estimée par ATG
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Contexte

Quantité du CO, stockée estimée par ATG
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusion et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld
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Contexte Problématique et objectifs Méthodologie

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement sans carbonatation - 1 jour

Analyse des résultats
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Contexte

Problématique et objectifs

Méthodologie

Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement sans carbonatation - 1 jour

wt (%)
cif

LS-NCA LS-RCA SSP-NCA SSP-RCA

Quartz 27.08(1.2) 34.2(0.2) 14.26(0.1) 38.16(0.3)
Calcite 39(2) 36.9(0.2) 51.5(3) 34.84(0.3)
Portlandite 7.8(0.3) 3.4(0.05) 6.8(0.1) 2.60(0.06)

Ettringite 2.3(0.1) 2.02(0.1) 2.31(0.2) 1.41(0.1)

CsS 2.8(0.2) 4.9(0.1) 4(0.1) 6.30(0.1)
C,S 1.9(1) 16.11(0.3) 15.5(0.4) 14.06(0.4)

Hc 0.28(0.04) 0.26(0.4) 0.24(0.06) 0.2(0.05)
Aragonite 0.7(0.1) 0.7(0.1) 1.31(0.1) 1.09(0.014)

Vaterite 0.13(0.9) 0.25(0.1) 0.02(0.2) 0.27(0.1)
Gypsum 0.1(0.1) 0.1(0.1) 0.22(0.12) 0.03(0.09)

(NS'X [3Bvilders

o Hydratation plus élevée dans les échantillons NCA

o Réactivité similaire de SSP et LS avec le ciment — stabilisation

rapide de l'ettringite
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement par carbonatation - 1 jour
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Contexte

Problématique et objectifs

Durcissement par carbonatation - 1 jour

Méthodologie

wt (%)
cif
LS-NCA LS-RCA SSP-NCA SSP-RCA
Calcite 41(1) 52(0.4) 55(1) 54(1)
Aragonite 2.06 2.8(0.1) 1.33(0.2) 1.75(0.1)
Vaterite 0.96 1.3(0.1) 0.6(0.2) 0.78(0.07)
Portlandite - 0.2(0.03) - 0.15(0.03)
Ettringite 0.2(0.6) 0.2(0.1) 0.2(0.9) 0.2(0.1)
Hc - - 0.7(0.1) -
CsS 1.9(0.3) 1.5(0.1) 2.4(0.2) 2.5(0.1)
C,S - 2.7(0.1) 1.8(0.3) 2.58(0.1)
Gypsum 0.81 0.5(0.1) 0.1(0.2) 0.36(0.7)
Quartz 50(1) 37(0.3) 38(0.5) 34.7(0.2)

(NS'X [3Bvilders

Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

o Augmentation significative de la calcite

o Légére augmentation de I'aragonite et la vatérite

o Ca(OH), insuffisant — baisse du pH — décalcification du C-S-H

o Carbonatation simultanée des hydrates
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Contexte

Problématique et objectifs

Méthodologie Analyse des résultats

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement par carbonatation - 7 jours
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement par carbonatation - 7 jours

(IS Devicer:

wt (%)
cif
LS-NCA LS-RCA SSP-NCA SSP-RCA - _ _
o Précipitation continue de la calcite
Calcite 29.2(0.1) 65(0.4) 57.5(0.3) 65.6(0.2)
LS-NCA
Aragonite 1.25(0.1) 3.1(0.1) 0.1(0.1) 1.9(0.2)
~ 0 — . . .
Vaterite 0.4(0.1) 2.5(0.1) 0.01(0.06) 1.1(0.1) 50220/ Dissolution de la calcite
= (i
Portlandite 9.6(0.1) 0.17(0.03) 0.004 (0.03) 0.01(0.07)
Re-précipitation Hydratation
Ettringite 4.1(0.1) 0.04(0.08) 0.003(0.064) | 0.001(0.041) | ___._._._._.__
. oH T ,‘/,.
Hc - - 0.4(0.1) - :
CsS 1.6(0.1) 0.6(0.1) 0.02(0.08) 0.01(0.08)
C,S 7.2(0.1) 1.4(0.1) 0.01(0.3) 0.6(0.2)
G 4.5(0.5 0.1(0.1 5.1(0.6 0.9(0.2 . . . .
ypsum 05) (0.1) 06) 02 o Conversion de I'aragonite et la vatérite en calcite dans
Quartz 39(0.2) 23.9(0.1) 35.7(0.2) 26.5(0.3) SSP-NCA
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

Durcissement par carbonatation - 28 jours
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Contexte

Durcissement par carbonatation - 28 jour

Problématique et objectifs

Méthodologie

wt (%)
cif

LS-NCA LS-RCA SSP-NCA SSP-RCA

Calcite 57(1) 62.7(0.6) 69(1.6) 59.3(0.4)

Aragonite - 0.005(0.194) - 0.6(0.2)

Vaterite - 0.3(0.2) - 0.3(0.2)
Portlandite 0.1(0.1) - 0.27(0.06)

Ettringite - - - -

Hc 0.7(22) . ; ]
CsS - - - -
C,S - - - -

Gypsum - - - 0.2(0.2)
Quartz 42(1) 37(1) 31(2) 39(0.5)

[Si Devicers

I'4
\

.

'~

Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld

o Précipitation continue de la calcite

LS-NCA
=29% —
=57%
la régle des étapes
B TP - d’Ostwald
_Vatérite  Aragonite _.. >
Métastable Stable
¢ Carbonatation ou Hydratation N
C.S CsS
Hydration lente Hydration rapide
Précipitation modérée CaCO; Précipitation CaCO;
Passivation Passivation
Carbonatation Carbonatation ralentie

profonde
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Contexte

Problématique et objectifs

Méthodologie Analyse des résultats Conclusions et perspectives

Quantité du CO, stockée estimée par DRX-Affinement Rietveld
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ages
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Hydratation dominant dans LS-NCA au jeune age
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Contexte

Quantité du CO, stockée estimée par méethode perte de masse

CO2 (%)

RSk Dovicers

Problématique et objectifs

—LS-NCA XLS-RCA
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Temps (jours)

& SSP-NCA

Méthodologie

0SSP-RCA

90

Analyse des résultats Conclusions et perspectives

Min absorption =2 % par LS-NCA
24h

Max absorption =5% par SSP-
RCA

90 jours

RCA > NCA
SSP > LS
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Effet du durcissement par carbonatation sur
les propriétés des BAPs
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Résistance en compression
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Contexte Problématique et objectifs Méthodologie Analyse des résultats

Résistance en compression: Relation avec le CO, stocké (méthode perte de masse)
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Quels autres mécanismes controlent réellement I’évolution

[Si Devicers

de la résistance ?

Conclusions et perspectives
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Résistance en compression: Paramétres influengcant son évolution
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Résistance en compression: Paramétres influengcant son évolution

28 jours 90 jours




Contexte Problématique et objectifs

Méthodologie

Résistance en compression: Paramétres influengcant son évolution

7 jours

m Résistance en compression m Surface carbonatée
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusions et perspectives

Densité apparente

De I'état initial scellé au durcissement par carbonatation
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Contexte

Porosité

——LS-NCA —+—LS-RCA ——SSP-NCA —+SSP-RCA

Problématique et objectifs

1 jour
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1 jours Porosité totale (%) 7 jours Porosité totale (%)
LS-NCA 15.8 LS-NCA 14.2
LS-RCA 16.4 LS-RCA 121
SSP-NCA 10.1 SSP-NCA
SSP-RCA 18.8 SSP-RCA 14.1

(IS Devicer:

Méthodologie

7 jours

Analyse des résultats

Affinement de la porosité dans les systémes

SSP — sur-carbonatation — augmentation de porosité

Conclusions et perspectives

28 jours
—+—LS-NCA —+—LS-RCA ——SSP-NCA —+SSP-RCA ——LS-NCA —+—LS-RCA ——SSP-NCA —+SSP-RCA

1,E+02

Diamétre (nm)

28 jours Porosité totale (%)

LS-NCA 12.5

LS-RCA 11.3
SSP-NCA [ 133 |
SSP-RCA 12.7
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Contexte Problématique et objectifs Méthodologie Analyse des résultats Conclusion et perspectives

Porosité
1 jour 7 jours 28 jours
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Carbonatation ou durcissement standard ?
Résistance en compression

Durcissement standard L _ _
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—LS-NCA X LS-RCA ® SSP-NCA ¢ SSP-RCA

E 45 _ L mNCA mRCA SS mNCA mRCA
S [
S _ S i 6,3 50 4,1 X i
& i f ~ 8 1,4 ~ 8
a ! ) )
s | % 5 2 h o 2
Rl e “f - S 7 -pman - :
8 % { % ‘4 B -0,8_2 6 % _4 B
C [ Pudt ) haet
o 30 f S -10 f 63 S -10 |
o - ~ - L) - —
Q T 3 16 | = -16
8 9 o 1,1
% 25 % w oo | W oo | 146
o) ] 47,7 195
X | g L2 28
20 b e e e 1 7 28 90 1 7 28 90
0 10 20 30 40 50 60 70 80 90 Temps (jours) Temps (jours)

Temps (jours)

| SES—

@ Long terme résistance en compression

(RIS D3Builders y



Contexte

Problématique et objectifs

Carbonatation ou durcissement standard ?

Méthodologie Analyse des résultats

Densité apparente

Durcissement standard

AL S-NCA ¢ LS-RCA ©SSP-NCA ® SSP-RCA
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De I'état initial standard au durcissement par carbonatation

Evolution relative-densité (%)
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CO, séquestré par les précurseurs

6 kg CO,/m3
RCA

60 kg CO,/m3
SSP et LS

CO; stocké par le durcissement par carbonatation

24 h 90 jours

~ 45 kg CO,/m3 | > =106 kg T
CO,/m?
24 h 28 jours
~8 % CaCO, ! > =70% T
CaCo,
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Conclusions

— Réduction de I’empreinte carbone

—> Le durcissement par carbonatation, combiné a I'utilisation de SSP et de RCA, offre un potentiel de stockage de CO,

— Matériaux alternatifs efficaces

SSP et les RCA permettent un stockage de CO, plus élevé tout en conservant des propriétés physico-mécaniques comparables aux LS
et NCA

— Ameélioration microstructurale

— | a précipitation de la calcite augmente la résistance mécanique, la densité apparente et affine le systeme poreux

Lefficacité de ces améliorations dépend de I’équilibre entre hydratation—carbonatation, de la composition du mélange et du volume carbonaté

— Facteurs controlants la carbonatation

> Teneur en eau Diffusion de CO, Interaction entre carbonatation et

» hydratation
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Perspectives

Points a approfondir

= La perte de résistance a long terme des BAPs-SSP en cure standard

= Résultats divergents du CO, stocké selon les techniques utilisées

« Absence d’analyse du cycle de vie

Carbonatation et stockage de CO,

Conclusions et perspectives

Développer des techniques Modélisation Développer un protocole

analytiques multi-échelle standardisé de carbonatation

B,

Nouveaux matériaux

biosourcés
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